
1

COE608 Computer Organization and Architectures
Winter 2017

Lab 6: The Complete CPU (Overall Project)

Due Date: Lab6 Part I & II -Week 12 (During the Lab Session)
 Bonus -Week 13

1. Overview

In this final lab project, a complete CPU will be implemented whose main components datapath and
control have been designed and implemented in the previous labs 4b and 5. Students are to combine the
control unit and data-path with a reset circuit (more on this below). When complete, the over-all design
will be able to implement the features described in the CPU specification document. Students are
encouraged to consult this specification document while proceeding to test the CPU. The instruction
memory unit (VHDL) and overall CPU testing block diagrams files to complete this lab are provided as
follows: 1) The files and specifics for testing and setting up the CPU for simulation can be found in a
document located in …/courses/coe608/labs/lab6/* and 2) for bonus marks involving CPU hardware
implementation and emulation, the specifications and documentation can be found in
…/courses/coe608/labs/bonus/*. The rest of this lab presents the reset circuit needed for the CPU.

2. Part I - CPU Reset Circuitry

 In order for the CPU developed here to work properly it must incorporate a reset circuit. The block
diagram of the reset circuit is illustrated in Figure 1.

 The reset circuit works as explained here. When RESET signal goes high, ENABLE_PD goes
 low that forces the control unit into state T0 and CLR_PC goes high, which clears the Program
Counter. We know that the CPU program starts in memory at location 0x00000000.

 When RESET goes low, ENABLE_PD & CLR_PC remains low & high respectively for 4 clock cycles.
This allows the data surrounding the CPU to stabilize before its operation begins. The reset circuit is
required to keep track (count) of the three clock cycles (T0, T1, and T2). This reset circuit can either
be implemented asynchronously or synchronously. The synchronous waveform is shown in Figure 2.

Figure 1: Reset Circuit

2

3. VHDL Implementation

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_arith.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY reset_circuit IS
 PORT
 (
 Reset : IN STD_LOGIC;
 Clk : IN STD_LOGIC;
 Enable_PD : OUT STD_LOGIC;
 Clr_PC : OUT STD_LOGIC
);
END reset_circuit;

ARCHITECTURE description OF reset_circuit IS BEGIN
-- you fill in what goes here.
END description;

Students are free to implement the ARCHITECTURE section however they see fit.

4. Part I - What to Hand In

Students must submit the following to obtain full marks for Lab 6, Part I:

 A hard-copy listing of your VHDL source code implementation.
 A hard-copy printout of the timing simulation results for the reset circuit.

The lab instructor will quiz you on both Part I (reset circuit) and Part II (final CPU) for the Lab 6 demo.

Figure 2: Reset Circuit Operation

3

5. Part II - The Complete CPU System

Once the reset circuit is implemented, all the CPU sub-systems are complete and the CPU can be
assembled. The final CPU will consist of one instance of the data-path, the control unit, and the reset
circuit. Interconnecting them appropriately is up to the students, however supporting files for VHDL
interconnection and setup may be found in the course directory …/courses/coe608/labs/lab6/ in the
cpu1 module. To help better understand the expectations and functionality of the final CPU, students
are encouraged to refer to the CPU Testing document available in the course directory and website.
This document will help you to:

 Generate the system's instruction memory unit (MegaCore RAM block (.mif) implementation)
 Assemble a top level working file (with reset circuit, instruction memory, a datapath, and

control unit)
 Include and map other supporting files
 Simulate and demo your working CPU for Lab 6
 And optionally emulate the CPU for the Lab 6 Bonus

Students are advised to also refer to the CPU Specification document to ensure that all operations and
specifications have been fulfilled by their final CPU.

6. Part II - What to Hand in

To obtain full marks for the complete CPU project (i.e. Lab6), students must demonstrate the correct
operation of CPU circuit through simulation. This means that students have to demonstrate the timing
simulation results that show the CPU correctly loading ALL the instructions and data, performing
addition, load upper immediate, etc.

In addition to this, students must submit the VHDL code for their CPU, as well as timing simulation
results for the complete CPU. To properly simulate the CPU operation, the CPU_testing document
should be consulted, and Memory Module files provided should be used. Your lab supervisor will quiz
you during the demo for both Parts I and II.

7. Bonus Project

To obtain bonus marks, students are required to demonstrate the operation of the processor through
emulation on the DE2 boards found in the laboratory. To properly implement the CPU, the
CPU_testing document should be consulted and system memory, seven-segment, display-unit,
decoder, and all the other VHDL file provided in the following course directory should be used.
…/courses/coe608/labs/bonus/*

The following problems are provided as a bonus. Solving them will result in additional marks being
added to your course mark.

4

Problem 1:
The processor developed throughout this course includes various branch and jump operations used for
conditional statements. Using the built in mnemonics/ instruction set, find a way to implement the
following:

IF(a == b){
 branch1();
}
else if(a > b){
 branch2();
}
else{
 continue;
}
end IF;

Problem 2:
Implement the following code using your CPU and its instruction set:

a = 1;
for(i = 1; i < 6; i++){
 a = a*2i
}

To obtain the bonus, the assembly code for both of the problems above must be submitted, and the
programs in question must be demonstrated on the DE2 boards in the laboratory.

:

 Instructor:

Course Title:

Course Number:

Semester/Year (e.g.F2016)

Student
LAST Name

Student
FIRST Name

Student
Number Section Signature*

*By signing above you attest that you have contributed to this written lab report and confirm that all work you have contributed to this lab report is your
own work. Any suspicion of copying or plagiarism in this work will result in an investigation of Academic Misconduct and may result in a “0” on the work,
an “F” in the course, or possibly more severe penalties, as well as a Disciplinary Notice on your academic record under the Student Code of Academic
Conduct, which can be found online at: http://www.ryerson.ca/senate/current/pol60.pdf

Assignment/Lab Number:

Assignment/Lab Title:

Submission Date

Due Date:

http://www.ryerson.ca/senate/current/pol60.pdf

1

Table of Contents

Introduction..2

Reset Circuit...2

Core VHDL Modules...3

Instruction Simulations and MIF Files.. 7

LDAI, STA, CLRA, LDA..7

LUI...8

LDBI, STB, CLRB, LDB.. 8

JMP.. 9

ANDI..10

ADDI..10

ORI...11

ADD...12

SUB..12

DECA...13

INCA..14

ROL..14

ROR... 15

BEQ..16

BNE Instruction Simulation...16

VHDL Implementation of CPU... 17

Conclusion... 25

References..26

2

Introduction

The goal of Lab 6 was to build and simulate a fully functional Semi-RISC CPU using
VHDL. This project involved combining all previously developed modules—datapath, control
unit, and reset circuit—into a cohesive system capable of executing a basic instruction set.
Through simulation and testing using a series of Memory Initialization Files (.mif), each CPU
instruction was validated in Quartus II using waveform outputs. This report presents the finalized
VHDL modules, the reset mechanism, and simulation results for each instruction. The .mif
values were used to populate instruction memory, and the functionality was confirmed through
waveform comparison.

Reset Circuit

Figure 1: reset_circuit.vhd​
 This figure shows the VHDL code for the synchronous reset circuit. When the Reset signal is
asserted high, the Enable_PD signal is driven low and Clr_PC is driven high, resetting the

program counter. After a few clock cycles, the CPU becomes enabled, allowing stable execution.

3

Figure 2: Reset Circuit Simulation Waveform​
The waveform confirms proper operation: Enable_PD is low and Clr_PC is high during the first

4 cycles after reset is asserted, and the CPU begins execution once the reset phase completes.

Core VHDL Modules

Figure 3: Control_New.vhd​
This file contains the finite state machine (FSM) logic that drives control signals for the

datapath. It interprets instructions stored in IR, managing transitions through the T0–T3 states
and issuing the necessary control signals for memory, register loading, and ALU operations.

4

Figure 4: cpu1.vhd​
This file instantiates and wires together the datapath, control unit, and reset circuit. It maps

internal signals and interfaces with the testbench and instruction memory, acting as the main
processor entity.

5

Figure 5: CPU_TEST_Sim.vhd​
 This testbench-style top-level file connects cpu1 and the system_memory. It provides external

clocks and data ports to simulate the system.

6

Figure 6: system_memory.vhd​
 This memory unit connects to cpu1 and uses .mif files to preload instructions for simulation.

Each test modifies this memory with specific opcodes to verify CPU behavior.

Figure 7: add.vhd (Updated)​
 Modified to add by 1, this version helps test increment operations and is used in simulations

involving INCA, ADDI, and other arithmetic instructions.

7

Instruction Simulations and MIF Files

Each of the following instructions was tested by updating the .mif file with corresponding
opcodes and running functional simulation. The results were observed using Quartus II's
waveform viewer.

LDAI, STA, CLRA, LDA

Figure 8: Waveform Simulation​
Confirms LDAI loads immediate into register A, STA stores it into memory, CLRA clears A, and

LDA reloads the stored value.

Figure 9: MIF Explanation​
 The instruction memory includes four key opcodes at addresses 0 through 3. These drive register

and memory interaction patterns.

8

LUI

Figure 10: Waveform Simulation​
 LUI loads an upper immediate value into register A. The waveform shows a correct load into A

without affecting the lower bits.

Figure 11: MIF Explanation​
 The opcode at address 0 sets the upper 16 bits of A, validating LUI functionality.

LDBI, STB, CLRB, LDB

Figure 12: Waveform Simulation​
 Immediate value is loaded into B, stored to memory, cleared, and then reloaded from memory.

9

Figure 13: MIF Explanation​
 Memory addresses 0–3 are loaded with opcodes representing the four instructions above.

JMP

Figure 14: Waveform Simulation​
 Confirms the Program Counter jumps to a new instruction address when JMP is executed.

Figure 15: MIF Explanation​
 Memory address 0 contains a JMP opcode that modifies the PC directly.

10

ANDI

Figure 16: Waveform Simulation​
 ANDI performs a logical AND between A and immediate, storing result in C. The waveform

shows changes in C with the Zero flag set appropriately.

Figure 17: MIF Explanation​
 Memory includes immediate load and ANDI opcode with bitwise result testing.

ADDI

Figure 18: Waveform Simulation​
 ADDI performs immediate addition and updates the result in C. The waveform shows carry/zero

status and updated output.

11

Figure 19: MIF Explanation​
 Test verifies signed/unsigned immediate handling through two opcodes.

ORI

Figure 20: Waveform Simulation​
 Performs bitwise OR with an immediate value. Waveform shows OR result populating C.

Figure 21: MIF Explanation​
 Memory holds immediate and ORI instruction opcodes.

12

ADD

Figure 22: Waveform Simulation​
 Standard addition between registers A and B. Result is shown on output C.

Figure 23: MIF Explanation​
 Tested with preload of values in A and B, with ALU ADD opcode issued.

SUB

Figure 24: Waveform Simulation​
 Subtracts B from A and shows result in C with corresponding zero/carry status.

13

Figure 25: MIF Explanation​
 Program loads values and performs a subtract via ALU.

DECA

Figure 26: Waveform Simulation​
 Decrements A and shows updated result.

Figure 27: MIF Explanation​
 Instruction sequence loads value, decrements, and stores.

14

INCA

Figure 28: Waveform Simulation​
 Increments A. ALU output is verified along with zero flag.

Figure 29: MIF Explanation​
 Value is loaded and incremented through INCA opcode.

ROL

Figure 30: Waveform Simulation​
 Performs rotate-left operation on register A.

15

Figure 31: MIF Explanation​
 Two opcodes simulate ROL on predefined value.

ROR

Figure 32: Waveform Simulation​
 Performs rotate-right operation on register A.

Figure 33: MIF Explanation​
 Instruction memory loaded to show ROR effect on bit positions.

16

BEQ

Figure 34: Waveform Simulation​
 Simulates branch-if-equal using flags from ALU. Jump is taken based on Z flag.

Figure 35: MIF Explanation​
 Memory programmed to test conditional branching. BEQ occurs based on equality check.

BNE Instruction Simulation

Figure 36: Waveform for BNE Execution​
 This waveform illustrates the behavior of the BNE (Branch if Not Equal) instruction. Register A
is loaded with AAAA, and Register B with BBBB. Since the two values differ, the CPU correctly

performs a branch to the address F0, as shown by the updated program counter (PC) in the
waveform.

17

Figure 37: MIF Setup for BNE Instruction​
 This MIF setup initializes the instruction memory to test BNE. It loads values into A and B,

followed by the branch instruction. The remaining memory is filled with zeros.

VHDL Implementation of CPU

Figure 1: VHDL Code for Control Unit

The Control.vhd module defines the logic for the CPU control unit, ensuring correct sequencing
of fetch, decode, and execute phases. The FSM transitions through states T0, T1, and T2, setting

control signals accordingly. The operation decoder determines execution steps based on the
instruction opcode, and the memory signal generator enables correct read/write operations. This

implementation ensures that all CPU components function in harmony, allowing seamless
execution of instructions.

18

Figure 3. Adder4.vhd

A 4-bit adder module that forms part of the ALU's arithmetic capabilities.

Figure 4. Adder16.vhd.

A 16-bit adder that enables larger arithmetic operations within the CPU.

19

Figure 5. Adder32.vhd

A 32-bit adder responsible for performing full-width arithmetic computations.

Figure 6. Alu.vhd
The Arithmetic Logic Unit (ALU) processes arithmetic and logical operations based on control

signals.

20

Figure 7: Data_path.vhd

Defines the data path, including registers, ALU, and multiplexers, ensuring correct data
movement.

21

Figure 8: Data_mem.vhd

 Implements the memory storage unit, supporting read and write operations.

Figure 9. Fulladd.vhd

A full-adder module utilized within arithmetic operations.

22

Figure 10. LZE.vhd

Logical Zero Extension module extends immediate values for operations requiring sign
extension.

Figure 11. Mux2to1.vhd

A two-input multiplexer used for selecting data sources.

23

Figure 12. Mux4to1.vhd

A four-input multiplexer used for complex data routing.

Figure 13. Pc.vhd
The Program Counter module responsible for maintaining instruction execution order.

24

Figure 14. RED.vhd

Extracts address and control signals from instructions.

Figure 15. Register32.vhd

Defines 32-bit registers used for storing operands and computation results.

25

Figure 16. UZE.vhd

Upper Zero Extension module for handling upper immediate values

Conclusion

This lab demonstrated the full implementation of a Semi-RISC CPU in VHDL. By
integrating a datapath, control unit, and reset circuit, the system could interpret and execute 16+
instructions. Simulations confirmed accurate behavior via .mif-based instruction loading and
waveform verification. Each opcode’s behavior—arithmetic, logic, memory, and
branching—was successfully emulated. This lab served as a culmination of concepts learned
throughout the course and provided a foundation for more complex CPU architectures and digital
systems.

26

References

[1] Geurkov, V. (2017). COE608: Computer Organization and Architecture Lab Manual (Winter

2017). Toronto Metropolitan University.

[2] IEEE. (2008). IEEE Standard VHDL Language Reference Manual. IEEE.

[3] "VHDL Documentation and Tutorials." (n.d.). Retrieved January 2025, from

https://www.vhdl.org

https://www.vhdl.org
https://www.vhdl.org

	Course Title: Computer Organization and Architecture
	Course Number: COE608
	SemesterYear egF2016: W2025
	Instructor: Dr. Vadim Geurkov
	AssignmentLab Number: Lab 6
	AssignmentLab Title: The Complete CPU
	Submission Date: March 31 2025
	Due Date: April 4 2025
	Student LAST NameRow1: Avella Ordonez
	Student FIRST NameRow1: Daniel
	Student NumberRow1: 501212214
	SectionRow1: 03
	SignatureRow1: DAO
	Student LAST NameRow2:
	Student FIRST NameRow2:
	Student NumberRow2:
	SectionRow2:
	SignatureRow2:
	Student LAST NameRow3:
	Student FIRST NameRow3:
	Student NumberRow3:
	SectionRow3:
	SignatureRow3:

